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• Pairwise Interaction Network

2



Actuarial pricing – regression modeling

• Actuarial pricing. Find the (unknown) regression function X 7→ µ(X) that
describes the conditionally expected claim

µ(X) = E [Y |X],

where X are the covariates (features) characterizing the claim (response) Y .

• Practical solution. Select a class M = {µ} of candidate regression models,
a strictly consistent loss function L for mean estimation, and solve for a given
i.i.d. learning sample (Yi,Xi)

n
i=1

µ̂ ∈ argmin
µ∈M

1

n

n∑
i=1

L(Yi, µ(Xi)).

• Commonly used model classes. Generalized linear models (GLMs), gradient
boosting machines (GBMs) and feed-forward neural networks (FNNs).
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Feed-forward neural networks

• FNN model class. One usually fixes the FNN architecture (hyper-parameters):

⋆ depth of network;
⋆ number of units in the hidden layers;
⋆ activation functions;
⋆ output activation (link function);
⋆ further modeling features like normalization layers, drop-out layers, etc.

• Based on these hyper-parameter choices, one receives a parametrized model class

M = {zϑ}ϑ, of FNNs zϑ with parameters (weights) ϑ.

• Model training focuses on finding an optimal parameter ϑ.

• Actuarial regression problems are predominantly based on tabular input data X.

• Plain-vanilla FNN training might struggle on tabular input data, especially (but
not only) if there are many high-cardinality categorical covariates.
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Actuarial regression problems

• Many actuarial problems are characterized by a low signal-to-noise ratio.

• The main issue lies in the model training, struggling to discriminate fine-grained
systematic structure from pure randomness on (small) finite samples.

• Attempts to adapt network architectures better to tabular input data:

⋆ TabTransformer of Huang et al. (2020);
⋆ Feature tokenizer (FT) transformer of Gorishniy et al. (2021) and Brauer (2024);
⋆ Credibility transformer of Richman et al. (2025);
⋆ Piecewise linear encoding (PLE) of Gorishniy et al. (2022);
⋆ In-context learning (ICL) credibility transformer of Padayachy et al. (2025).

Many of these methods extract information via a classify (CLS) token, introduced
by Devlin et al. (2019) to pre-train BERT (bidirectional encoder representations
from transformers) in the context of language processing.

• We take one step back here: inspired by regression trees and GBMs, we only
allow for binary interactions among the inputs by correspondingly partitioning
the covariate space – this will still bear some similarity to transformers.
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Tree-like pairwise interaction network

• We introduce tree-like pairwise interaction networks (PINs).

• It mimics a continuous version of covariate space splitting.

• These splits consider two covariate components at a time, thus, allowing to capture
binary interactions; classical regression trees are based on splitting only along one
covariate at a time, which does not directly capture interactions.

• PIN is closely related to generalized additive models with binary interactions
(GA2Ms); see Lou et al. (2013) and Wood (2006).

• Pros:
⋆ Excellent predictive performance on tabular actuarial data.

⋆ Efficient computations of SHapley Additive exPlanations (SHAP).

⋆ Can be interpreted as a graph neural network (GNN) allowing to benefit from the GNN toolbox.

⋆ Allows for variable selection (implemented but unpublished...).

• Cons:
⋆ Scales badly in the input dimension.

⋆ Higher order interactions are not captured and boosting is not straightforward.
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Feature tokenizer

• It has become common practice to map tabular input data to 2D tensors; Gorishniy
et al. (2021), Brauer (2024) and Richman et al. (2025).

• Map the tabular input data X = (X1, . . . , Xq) to a 2D input tensor

X 7→ ϕ =
[
ϕ1 = ϕ1(X1), . . . , ϕq = ϕq(Xq)

]
∈ Rd×q.

• The embedding dimension d ∈ N is a hyper-parameter selected by the modeler.

• Categorical covariates: entity embedding. For Xj ∈ Xj := {1, . . . , nj} with nj

levels, consider

ϕj : Xj → Rd, Xj 7→ ϕj(Xj) =

nj∑
x=1

wj,x 1{Xj=x},

with embedding matrix [wj,1, . . . ,wj,nj
] ∈ Rd×nj – these parameters are learned

during network training (proximity means similarity in risk behavior).
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• Continuous covariates: FNN embedding. For Xj ∈ R, consider a FNN

ϕFNN1
j : R → Rd, Xj 7→ ϕj(Xj) = ϕFNN1

j (Xj),

with ϕFNN1
j a standard FNN – its parameters are learned during network training

(every continuous covariate Xj has its own FNN ϕFNN1
j ).

• This results in the 2D input tensor

X 7→ ϕ = [ϕ1, . . . , ϕq] = [ϕ1(X1), . . . , ϕq(Xq)] ∈ Rd×q.

• Covariates do not interact yet, this is similar to tranformers and attention layers.
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Pairwise interaction token

• Select for the shared interaction network a deep FNN zFNN2
θ providing

(ϕj, ϕk, ej,k) 7→ zFNN2
θ (ϕj, ϕk, ej,k) ∈ R,

with:

⋆ this network zFNN2
θ models the pairwise interaction between all pairs (ϕj, ϕk);

⋆ the network parameter θ is shared across all pairs;
⋆ to allow for different behaviors in the interactions between the pairs, we add a

learnable interaction token ej,k ∈ Rd0;
⋆ unlike the CLS token of Devlin et al. (2019) in BERT, our interaction token is

not used to extract information, but it is used to encode different interaction
behavior.

• This shared interaction network shares similarity with the (self-)attention layer
of Vaswani et al. (2017). However, instead of computing attention weights that
are applied to so-called values, we let the covariates directly form the outputs, and
the interaction token may pronounce the effect of a given covariate pair.
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Pairwise interaction layer

• Define the pairwise interaction units by

hj,k(X) = σhard

(
zFNN2
θ (ϕj(Xj), ϕk(Xk), ej,k)

)
, for 1 ≤ j ≤ k ≤ q,

for hard sigmoid activation σhard(x) = max(0, min(1, (1 + x)/2)) ∈ [0, 1].

• The pairwise interaction layer for input X ∈ X is defined by the upper-right
triangular 2D tensor

(hj,k(X))1≤j≤k≤q =


h1,1(X) h1,2(X) · · · h1,q(X)
n/a h2,2(X) · · · h2,q(X)

... ... . . . ...
n/a n/a · · · hq,q(X)

,
where the lower-left part is left undefined (indicated by n/a).
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Example: pairwise interaction layer

• The plots give two examples of (linear) pairwise interaction units hj,k(X).

• Essentially, we receive a continuous and generalized version of classical regression
tree splits which can only be vertical or horizontal.
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Pairwise interaction network

• The pairwise interaction network (PIN) is defined by µPIN : X → R

X 7→ µPIN(X) = g

 ∑
1≤j≤k≤q

wj,k hj,k(X) + b

,
with learnable output weights (wj,k)1≤j≤k≤q, bias b ∈ R and output activation
(inverse link) function g.

• Structural similarities with GA2Ms and GBMs are obvious.

• This PIN can be interpreted as GNN with message function

M(ϕj, ϕk, ej,k) = σhard
(
zFNN2
θ (ϕj, ϕk, ej,k)

)
,

with nodes (vertices) (ϕj)j∈V and edges (ej,k)(j,k)∈E.
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Example: French MTPL claims frequency data

• A standard actuarial benchmark dataset is the French motor third party liability
(MTPL) claims frequency data of Dutang et al. (2018).

• We use the identical data cleaning and learning-test sample partition as in W.–
Merz (2023).1 This makes the results comparable to various studies in the actuarial
literature.

Characteristic Learning set Test set

Number of insurance policies 610’206 67’801

Total exposure (years) 322’857 35’943

Number of claims 23’738 2’645

Average frequency (per exposure) 7.36% 7.35%

Covariate description

Categorical (3): VehBrand, Region, VehGas (binary)

Continuous (6): Area, VehPower, VehAge, DrivAge, BonusMalus, Density

Response: ClaimNb (claim count)

Exposure: Exposure (in yearly units)

1https://aitools4actuaries.com/
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PIN architecture and model training

• We select the following PIN architecture:

Module # Weights

• Embedding dimension d = 10:

Categorical features (2) with nj = 11, 22 330

Continuous features (7) FNN depth 2 with 20 units 1’750

• Pairwise interaction layer (FNN depth 3):

Interaction tokens ej,k (9 · 10/2) with d0 = 10 450

1st FNN layer with 30 units 930

2nd FNN layer with 20 units 620

3rd layer with hard sigmoid activation 21

• Output:

Output weights (wj,k)j≤k including bias b 46

Total 4’147

• Model training is done with stochastic gradient descent (SGD) using the Poisson
deviance loss, the Adam optimizer, a batch size of 128, and early stopping.
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PIN results

# Out-of-sample
Model Param. Poisson loss

Null model (intercept-only) 1 25.445

Poisson GLM 50 24.102

Poisson GAM (66.7) 23.956

Plain-vanilla FNN; W.–Merz (2023) 792 23.783

FT transformer; Brauer (2024) 27,133 23.726 (± 0.006)

Credibility transformer; Richman et al. (2025) 1,746 23.711

In-context learning (ICL); Padayachy et al. (2025) 46,439 23.676

Pairwise interaction network (PIN) 4,147 23.667 (± 0.020)

• The network results are ensembles over 10 SGD fits.

• The out-of-sample Poisson deviance loss is dominated by irreducible risk (low
signal-to-noise ratio), i.e., the magnitude of model improvement (systematic
structure) lives on a smaller scale.

• Out-of-sample fluctuations (1sd) of SGD training are approximately: ±0.020.
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• Section 2: Explainability
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Pairwise interaction strength

• (lhs): Friedman–Popescu’s (2008) H2-statistics (unnormalized version).

• (rhs): PIN interaction importance; this is similar to an ANOVA for GLMs by
parallel training of including individual interaction terms.
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SHapley Additive exPlanations (SHAP)

• SHAP introduced by Lundberg–Lee (2017) uses the Shapley (1953) values from
cooperative game theory to additively decompose (explain) a prediction µPIN(X).

• Under Shapley’s fairness axioms, there is exactly one decomposition (ψj)
q
j=1 of a

gain of a cooperative game among its q players (under a given value function ν)

ψj =
1

q

∑
C⊆Q\{j}

(
q − 1

|C|

)−1(
ν(C ∪ {j})− ν(C)

)
, for j ∈ Q,

where C ⊆ Q are the possible coalitions of the grand coalition Q = {1, . . . , q}.

• Adopting this to machine learning explanations, there are two difficulties:

1. Explicit computation of the Shapley values (ψj)
q
j=1 for large q (combinatorial

complexity).
2. Choice of value function ν; how should one mask the coalitions in predictions?
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KernelSHAP and PermutationSHAP

• There are two equivalent alternative representations of the Shapley values:

⋆ KernelSHAP version of Lundberg–Lee (2017);
⋆ PermutationSHAP version of Štrumbelj–Kononenko (2010, 2014).

• PermutationSHAP. Denote by π = (π1, . . . , πq) a permutation of the ordered
set (1, . . . , q). Let κ(j) ∈ Q be the index with πκ(j) = j, and set

Cπ,j =
{
π1, . . . , πκ(j)−1

}
⊂ Q.

The Shapley values can equivalently be computed by

ψj =
1

q!

∑
π

ν (Cπ,j ∪ {j})− ν (Cπ,j).

• KernelSHAP and PermutationSHAP are approximated by Monte Carlo.

• Mayer–W. (2025) prove asymptotic normality results for both of these Monte
Carlo approximations – this is useful to quantify the accuracy under finite samples.
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Interventional SHAP

• We consider the interventional value function

C 7→ νx(C) := EX

 ∑
1≤j≤k≤q

wj,k hj,k
(
xC,XQ\C

)
+ b

,
in the fixed covariate value x.

• Remarks:

⋆ Usually, the interventional value function νx considers the (PIN) predictions on
the link scale

g−1
(
µPIN

(
xC,XQ\C

))
.

⋆ This value function νx(C) is approximated empirically using a background
dataset.

⋆ The conditional SHAP version is more complicated (and time-consuming)
because it requires to compute proper conditional expectations (empirically).
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SHAP for binary interactions

• We consider the interventional value function

C 7→ νx(C) := EX

 ∑
1≤j≤k≤q

wj,k hj,k
(
xC,XQ\C

)
+ b

,
in the fixed covariate value x.

• Important: νx(C) only contains binary interactions through hj,k.

• Proposition [Lundberg (2018), Mayer–W. (2025)]. In case of a value function ν
that contains at most binary interactions, it suffices to compute the Monte Carlo
PermutationSHAP for one single permutation π = (π1, . . . , πq) and its reversed
pair (πq, . . . , π1) to receive the exact Shapley values (ψj)

q
j=1. Any permutation π

and its reversed pair does the job.

• This allows for very efficient SHAP computations in the binary interaction case.
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SHAP illustrations

• There are many more post-hoc explainability tools based on SHAP decompositions.
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Summary

• We have introduced the pairwise interaction network (PIN).

• Its implementation was motivated by the fact that classical feed-forward neural
networks often struggle to deal with tabular input data.

• PIN shares many similarities with other machine learning models, e.g.,

⋆ regression trees and gradient boosting machines;
⋆ attention layers of transformer architectures; and
⋆ graph neural networks.

• PIN has an excellent predictive performance – in fact, the best of the models
compared – and it can be trained on an ordinary laptop without GPUs (for
moderately large insurance datasets).

• Since PIN only contains binary interactions, it allows for an efficient computation
of SHAP values, via Monte Carlo PermuationSHAP using one single permutation
and its reversed pair.
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[14] Richman, R., Scognamiglio, S., Wüthrich, M.V. (2025). Tree-like pairwise interaction networks. arXiv:2508.15678.

[15] Shapley, L.S. (1953). A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.), Contributions to the

Theory of Games, AM-28, Volume II, Princeton University Press, 307-318.
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